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The problem of the stability of the periodic motion of a m~ti-~rne~ion~ periodic system with a small 

parameter is considered. The system is autonomous when that parameter is zero. The critical case when 

the characteristic indices consist of a zero and N pairs of purely imaginary numbers is investigated on 

the assumption that tbe system is reversible (t-invariant) in the Birkhoff sense. It is shown that when 

there is no parametric raonance the characteristic indices of the original system are identical with the 

characteristic indices of the corresponding autonomo~ system to first-order in the small parameter if 

there are no multiplicities in the autonomo~ system. Cases of third- and fourth-order internal 

resonance are then considered. Here the system can be unstable and a non-linear analysis is required. 

Necemary and sufficient conditions for stability are found, and the influence of small periodic terms on 

the stability is established. 

The results obtained are used to investigate the periodic piecewise-orbital motion of a geostationary 

satellite with a small reactive thrust that allows it to hover over any point of the Earth’s surface. 

1. CONSIDER the system of equations of perturbed motion 

x’= X(XJ,E), x E R2N+1 

%W,E)= p’o -I- &*Ak(r) x+X,(x)+ $e”X&,t) 
k=l 1 k=l 

where x=(n,, ,.., +,,+I) is the phase-variable vector, X0(x) is an analytic vector-function of x 
containing no terms that are of lower than the second order in x, Xk(x, t) are o-periodic 
fictions of time t, analytic in a neighbourh~ of zero in x, and containing no terms that are 
of lower than the second order in x, A, and A,(x) are respectively a constant and w-periodic 
(2N + 1) x (2N +l) matrices such that the linear part of system (1.1) has only one zero and N 
pairs of purely imaginary characteristic indices kh, (ht < 0; s = 1, . . . , IV) and E is a small 
parameter. The values of the matrix elements of A&) averaged over a period are zero, which 
obviously does not cause any loss of generality. Furthermore, we shall assume that system (1.1) 
is reversible [l, 21 (or t-invariant [3]), i.e. the following identity exists 

m(x,t,E)+ x(hfX,-t,E) i 0, M2 = E 

(E is the unit matrix). 
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In analysing the stability of the trivial solution of system (1.1) when E = 0 it was shown [4, 51 that this 
system can, in particular, describe the perturbed piecewise-orbital motion of a geostationary satellite 

which uses a small thrust to ensure motion along a circular orbit of arbitrary diameter. One can show that 
the investigation of the stability of periodic motions appearing in a neighbourhood of the relative 
equilibrium positions considered [4] lead to equations of perturbed motion of the form (l.l), in which the 
role of the small parameter E is played by the eccentricity of the elliptical orbit of the centre of mass of the 
satellite. 

It is known [6] that the question of the stability of the trivial solution of system (1.1) reduces to the 

question of the stability of an autonomous system with one zero and N pairs of purely imaginary roots 
considered in [S]. 

For a system containing a small parameter it is interesting to clarify the role of this parameter in the 
solution of the stability problem. 

We first transform the linear part of system (l.l), reducing it to autonomous form, and to 
this end introduce new variables z = (zl, , . . , z~~+~) with the formulae 

x = [E. +&&(t)+...]z (1.2) 

where B,, is a constant and B,(t) is a matrix o-periodic in t. 
We require that in the new variables the system has the form 

z’= [A() + &hy+...]z (1.3) 

where A0 and A1 are constant diagonal matrices. 
Differentiating (1.2) with respect to time and using (l.l), we obtain the following systems of 

equations for the jth columns of the matrices $ and Bl 

(A, -aojE)Boj =O (j=1,...,2N+l) (1.4) 

B;j -(A0 - hojB)B,j = (A, - h,jE)Boj (1.5) 

where h, and hlj are elements of the matrices A,, and h,, respectively. (It follows from (1.4) 
that the h,,j are the eigenvalues of the matrix A,,.) 

We consider the question of the existence of an o-periodic solution to system (1.5). All the 
roots of the characteristic equation of each of these systems is found from the formula 

Ki,=i(Imh,,-Im5,j) (s,j=1,...,2N+l) (1.6) 

Introducing the matrix e,(t) = diag(e”“‘, . . . e”“““‘), we consider the normalized fundamental 
matrix 

B;(f)= B$?j(t)Bi’ (1.7) 

We take a particular solution of the inhomogeneous system (1.5) in Cauchy form 

B;j(r) = (ls;,(t_7)[A1(7)-hljElg~jlfT 
I) 

(1.8) 

and choose the arbitrary constants Cj = (Cj,, . . . , C,,,)’ of the general solution from the 
periodicity condition which leads to the system of equations 

[B;j(o)-ElCj +B;i(W)=O (1.9) 

Since, as follows from (1.6), the characteristic equation of each of the systems (1.5) must 
have one (and only one) zero root, for system (1.9) we have det[BG(o)= E]=O, and 
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consequently 

(1.10) 

if the equality 

Ksj 0 = 2ikn (1.11) 

is not satisfied by any natural k, and this we shall assume below. (For a second-order system 
with a pair of imaginary eigenvalues this relation obviously represents the condition of 
parametric resonance.) 

It follows from (1.10) that system (1.9) will either have no solutions or an infinite number of 
them. In the latter case the matrix qj(o) should satisfy the condition 

rank([BG(o)-El, -B;j(a)l=2N (1.12) 

Condition (1.12) can be satisfied by putting hlj = 0 in (1.8). 
Indeed, taking (1.7) and (1.8) into account, we can write 

B;i(co)=~B~j(“-~)A~(z)Boim=UjB;i(m-~)Alj(’)A 
0 

(1.13) 
0 

where the elements of the column matrix Aj(z) are o-periodic functions of z that are 
expandable in a Fourier series. This enables us to represent the final integral in (1.13) in the 
form 

From this it is clear that the last column of the widened matrix appearing in (1.12) is a linear 
combination of all the other columns, and consequently condition (1.12) is satisfied when 
hlj = 0. 

An important conclusion has therefore been obtained to the effect that in the absence from 
the system of the commensurability condition (1.11) the characteristic indices of the original 
system are identical to first order of accuracy in E with the eigenvalues of the matrix 4. This 
conclusion can also be obtained by more complicated arguments [3]. 

2. On the basis of the above, system (1.1) can be represented in the form 

y’= z y(m) + y , u'= h,u+ +m) +u, 
m=2 m=2 

E'=_&u'+ $'"'+u 

m=2 
(2.1) 

A, = diag(z~O~,...,dO~) 

J4 = (U,,...,UN), ii=@, ,...,is,) 

where u and ii are complex-conjugate variables, Y, U and u are analytic functions of y, U, ii, t 
and E containing powers of E not lower than two and pm’, U(“) and UC”) are mth order forms 
with o-periodic coefficients representable in the form 

Y(“) = Y,‘m’(y,u,8)+EY~m(“)(y,u,P,t), U’“’ = U~‘(y,u,iT)+&U~“)(y,u,il,t) (2.2) 
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If system f2J) has the autumorphism a j-t, u + iz, P+ it, y+ y (which from now on we 
ass~e~~ then by a s~tab~e ehoiee uf ~urrna~~2~ng tran~urmat~on these forms wilf c&y have 
pureIy i~~~na~ ~~f~cients ]4], 

It is known [7] that the systems under consideration are formally stable if the frequencies do 
not possess any lp Ith order resonant relations of the form 

where p is an integer vector with rn~~~~y-~irne cove ~orn~~e~~* 
We wiff consider those resonant eases in which the stability question is resalwd by the firs% 

non-linear terms, i.e. third- and fourth-order resonances; in each of these cases the solution of 
the stability problem very largely depends on whether or not the right-hand side of (2.3) 
vanishes. 

We will first consider the case when t p I= 3 and 4 # 0. Ferforming a non&rear no~al~zation 
of system (2.1) using the weal-known ~r~~~e f8], we obtain in polar coordinates r,, 8, the 
fo~owi~g model system ~~onta~~ng only the first non-linear ierms) 

Here ft,, #Sf and B, BX constant coefficients whose expressions in terms of the ~oef~~en~ of 
the forms (2.2) are known [8]. 

The model system that has been obtained is a special C&W of the systems considered in [4,5], where it 
was shown that the problem of the stability of the trivial solution is governed exclusively by the resonance 

~~~~~~ B,, v&i& appear only as a coxrseqBence of the presence of small periodic terms in the &ginaf 

system. Necessary and sttfficient coBditians for stab%@ were derived which bave to be satisfied by these 

conditions. 

For lpl= 3 and q =O the model system differs from (2.4) only in the equations for the 
resonant variables r,, which take the form 

where the constant coefficients bf are computed in terms of the constant coefficients of the 
forms Ypr)* Uim) and up) of system (22) 

The problem of the stability of the &iviaE solution of the model system obtained is solved 
o&y by the group of e~~~~ (2.5) f4* 5f: the necessary and sufficient c~~d~~o~ fur stability is 
the presence of a sign change in the series of ~oef~~~ients a, = b: + Et>, of system (2.5). But 
because for sufficiently small values of E the signs of 4 are the same 81s the signs of b:, in the 
case under consideration the solution af the problem d the stability of the original system can 
be obtained while ignoring its periodic part. 

We now consider fourth-order resonance, For 4 r;tU the model system, &ont~ni~~ terms up 
to the ~d*order in&x&e, oan be written as 
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y’= 0, r; =ZEb~~‘~sin8 (s=l,...,n) 

(2.6) 

rd =O, 8, = ha, + (i% +&a )Y -e cslcx + @aa jr2 + 

+~(~~j+~~j)rj (a=?f+l,.-.,N) 
j=l 

8 = ~~er+...+&e”, lpi= 4 

Thus, in this case the original periodic system reduces to an autonomous system which is a 
special case of the systems considered in [5]. According to results obtained in [5], a necessary 
and sufficient condition for the stability of the trivial solution of system (2.6) in the non- 
degenerate case (all b, f 0) is either the presence of a pair of coefficients b, and b,, of opposite 
sign, or if the series b, does not change sign, the satisfaction of the inequality 

(2.7) 

Obviously, in the case of fourth-order resonance (Ip I= 4) for sufficiently small values of E 
inequality (2.7) will always be satisfied, and hence the trivial solution of system (2.6) in the 
I p I= 4, 4 + 0 case is always stable. 

Suppose now that with a fourth-order resonance in (2.3) we have 4 = 0. Then the normalized 
model system will differ from (2.6) only in the equations for the resonant variables r,. These 
equations will have the same form as (29, but with Ip I= 4. We see that the signs of all the 
a, = bz + cb, and cj = yfj +eyd for sufficiently small values of E will be the same as the signs of 
b,” and r$, and consequently, in the solution of the stability problem for this case the periodic 
terms in the original system can be ignored, The stability conditions for the autonomous 
system obtained are given by a theorem from [5]. Thus, based on the above one can formulate 
the following theorem. 

Theorem. Suppose that in system (1.1) there is an internal resonance (2.3) of third or fourth 
order with q = 0. Then, when solving the stability problem for sufficiently small E, one can 
consider the corresponding autonomous system obtained from (1.1) with e=O instead of the 
original periodic system. For the case when q f 0 the stability of the trivial solution of system 
(1.1) with t~rd-order resonance is governed exclusively by the periodic terms, no matter how 
small E is; at fourth-order resonance and q f 0 the stability of the trivial solution of system 
(1.1) is still preserved when non-linear terms of up to third order inclusive are taken into 
account. 

3. The analysis that has been performed enables us to generalize previous investigations 
14, 83 into the stability of piece~se-orbital motion of a geostationa~ artificial satellite that is 
suspended over any point on the Earth’s surface as a result of a small accelerative thrust w that 
is constant in modulus. We shall show that in a small neighbourhood of the stable stationary 
motions found in [4] that are relative equilibria of the satellite in a uniformly rotating system of 
coordinates comoving with the Earth, stable periodic motions exist with periods close to the 
Earth’s rotational period, and with the same set of unstable resonant regimes. 

To this end the equations of motion of such a satellite represented, as in f4, 81, as a body of 
variable mass with a rigid surface, are written in a Cartesian system of coordinates xyz rotating 
with angular velocity o, whose origin is located at the centre of the Earth, with the z axis about 
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which the rotation takes place directed along the Earth’s axis of rotation. We take o to be 
equal to the angular velocity of the satellite along an elliptic Keplerian orbit with semi-axis a 
equal to the radius of the orbit of a stationary equatorial satellite and an arbitrary, but 
sufficiently small eccentricity e, so that 

where v is the true anomaly of the elliptical orbit considered, and u is the gravitational 
parameter of the Earth. 

Taking into account the smallness of e instead of (3.1) we shall use in what follows the 
approximate expression 

bv/dr=o,(l+2ecosv) (3.2) 

where o, is the angular velocity of the Earth about its axis. 
Then using the notation and assumptions of [18] we obtain the following equations for the 

pie~ewise-orbital motion of a satellite with a small thrust of constant magnitude, whose vector 
is stationary in a system of ~~rdinates attached to the satellite and which passes through its 
centre of mass 

Here R, cp and B are, respectively, the distance to the eentre of the Earth, and the latitude and 
longitude of the centre of mass of the satellite in the previously mentioned rotating system of 
coordinates, ai, pi and y, are the direction cosines of the principal axes of inertia of the 
satellite with respect to the introduced spherical (orbital) system, cri are the direction cosines 
of the vector w with respect to the comoving axes, p, q and r are the projections of the absolute 
angular velocity of the satellite onto the comoving axes, and A I B and G are the squares of the 
radii of inertia with respect to the principal axes, assumed to be constant; differentiation with 
respect to time t is denoted by an overdot. 

Changing from the time t to a new independent variable v and putting 



p’y6, q=y7, r=hr 8;‘YQt Yt =&lb %t=Yflt @=h 

instead of (3.3) we obtain the following system in which non-linear terms in the small para- 
meter e are neglected 

y,: = Y#(e,y,,...,yiQ9 b= L...Jl) Y;2 = Y3 (3.4) 

Here 

r,=y,* YZ=y5’5r Ys =i 2ey3 sin v - 2Y3Y4 t Yt + 2&Y, t8 Yz - 

-2y4 /yr +2ys tgyz c2cJinv+wi~uP~ IW”Y,~~ 

Y,, = 2ey, sinv + yr cos2 y2 f 0': COs* Y2 + Y: )Yt + 2Y,Y, cm2 Yz + 
(3.5) 

-HY:sin2y*-siny,cosy2-y3sin2y2+w~~$iui/(v~2y,) 
ID 

% = (13 - c)tY@s - &@,Y, ! 7:) / FAv’) 

5 = tc - 4CYsYs - 3PYlY, / YMW 

~,=(A-B)(Y~Y~-~~Y~Y~IY:)I(CV’) 

ys =~ffiY~-S3y,)lv'-(a,)4~a+YsYIo)-(o,a,~a)lv‘ 

Y;O=(Y~Y~l-y3Y7)~V'~~~Y3~Yi+Y3YQS^(~,~,c~sY2)fv' 

%=o;iy3 -Y8Y10)~v'+~2Y3~~sY2+~2Yj+(~,~2~~Y2~/~' 

where in accordance with a~ro~i~~on (3,2) one must take 

l/v’=w;‘(l-Zecosv), l/VZ=or;2(1-4ecosv) 

For e = 0 system (3.4) has the particular solution 

the orbital stability of which was investigated in [4J, {the final equation of system (3,4) was 
neglected because the variable YE does not enter into the ~ndament~ system g~~~~~~g the 
orbital stability of the satellite), and it was shown that the domain of orbital stability of the 
stationary motion (3.6) and the unstable resonant sets are almost identical with those which 
were constructed [8] using a non-central model of the gravitational field of the Earth, 

Because the right-hand side of system (3.4) is an analytic function of the small parameter E 
and is &c-periodic in v, then by a theorem of Poincare 191 it can have B Zz-periodic solution, 
analytic in e and reducing to solution (3.6) when a=0 if the characteristic equation of the 
varied system of equations about e = 0 does not have roots of the form iki, (k = 0, 1, 2, . , . ); in 
the opposite case the right-hand sides af the corresponding inhomogeneous system should 
satisfy given conditions. 
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Representing the required periodic solution in the form 

zfv) = y’ + cufv)+. * . 

z=(z, ,*..,Zll), u = (Ul ,“..J,,) 

where y* = (y;, . . . , yll) is a particular solution of f3.6), and putting Y, = Y,“(y)+eY:(y, v) in 
(3.4), we obtain for u,(v) the system of equations 

u: = 11 z 
2 ay, * ( 1 u, +Y,‘(y*,v) (s = l,...,ll> (3.7) 

in which the constant matrix ~aY~~/a~~]~ (the asterisk denoting the result of substituting the 
values of (3.6) in place of the y,) is the matrix of the system of variational equations for the 
particular solution (3.6), the stability of which was investigated in [4], where it was shown that 
for all values of the system parameters this matrix can only have one zero eigenvalue, Thus 
system (3.7) can have a 2x-periodic solution only in the case when the functions Y*‘(y*, v) 
satisfy the conditions 

and the remaining eigenvalues do not include purely imaginary vafues equal to ti 191. From 
(3-5) it is clear that condition (3.8) is satisfied and, consequently, system (3-7) will have a 2x- 
periodic solution if one excludes from co~ideratiou the set of parameter values for which the 
above pair of imaginary roots occurs, and this we shall assume to be true in the following. 

One can verify that the equations of perturbed motion for the periodic motion under 
investigation will have the form of system (1.1). Thus, putting X, = y, -z,, for the equations of 
the first approximation we obtain 

(3.9) 

where the terms that have not been written out are of higher than the first order in the small 
parameter e. 

As we see, for e = 0 Eq. (3.9) reduces to the system considered in (41 and admits of the linear 
automorphism 

x1 + Xl, XZ -+ q, x3 _-)X3, x4 -+x4 

which, as can be verified, is also the case for system (3.9). It too is therefore reversible. From 
this and from Sec. 1 it follows that the characteristic indices of system (3.9) will differ Erom the 
eigenvalues of the matrix ~a~~~=]* governing the stability of the stationary motion (3.6) by 
terms of the order of e’, and hence the domain of stability of the periodic motion considered 
in the space of parameters B/A, C/S and (9, will, for sufficiently small values of e, be almost 
identical with the domain of stability of the above stationary motion constructed in [8]. From 
the reversibility of system (3.9) it also follows that this domain will at the same time be the 
domain of complete stability in the sense of Birkhoff [lf, i.e. stability to any finite order. 

Based on the theorem proved in Sec. 2, one can also conclude that the instability of 
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stationary motion at third-order resonance discovered in [4, 81 corresponds to instability for 
the same values of the parameters in the periodic motion under consideration. 
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